Researchers at the Department of Energy’s Oak Ridge National Laboratory have applied for a patent on a composite that includes semiconducting nanoparticles, which will increase strength and imbed monitoring capabilities.
Self-Monitoring Composites
Stronger Composites With Monitoring CapabiltiesDamage to carbon fiber composite structures can hide beneath the surface of the material, making it undetectable to the human eye and potentially catastrophic.“Carbon fiber composites fail catastrophically, so you won’t see damage until the entire structure has failed,” said Chris Bowland, a Wigner Fellow at the Oak Ridge National Laboratory (ORNL) in a Department of Energy (DOE) news release. “By knowing what’s going on within the composite, you can better judge its health and know if there is damage that needs to be repaired.” Bowland and Amit Naskar, leader of ORNL’s Carbon and Composites Group, invented a roll-to-roll process to coat electrically conductive carbon fibers with semiconducting silicon carbide nanoparticles. According to the news release, this nanomaterial-embedded composite has greater strength than other fiber-reinforced composites and imbued with a new capability—the ability t o monitor its own structural health. When enough coated fiber is embedded in a polymer, the fibers create an electrical network and the bulk composite becomes electrically conductive. The semiconducting nanoparticles can disrupt this electrical conductivity in response to applied forces, adding an electromechanical functionality to the composite. If the composite is strained, the connectivity of the coated fibers is disrupted and the electrical resistance in the material changes. Should storm turbulence cause a composite airplane wing to flex, an electrical signal may warn the plane’s computer that the wing has endured excessive stress and prompt a recommendation for an inspection. ORNL’s roll-to-roll demonstration proved in principle that the method could be scaled up for high-volume production of coated fibers for next-generation composites. Self-sensing composites, perhaps made with a renewable polymer matrix and low-cost carbon fibers, could find themselves in ubiquitous products, even including 3D-printed vehicles and buildings. To fabricate nanoparticle-embedded fibers, the researchers loaded spools of high-performance carbon fiber onto rollers that dipped the fiber in epoxy loaded with commercially available nanoparticles about the width of a virus (45–65 nanometers). The fiber was then dried in an oven to set its coating. To test the strength with which nanoparticle-embedded fibers adhered to the polymer matrix, the researchers made fiber-reinforced composite beams with the fibers aligned in one direction. Bowland conducted stress tests in which both ends of this cantilever were fixed while a machine assessing mechanical performance pushed on the beam’s middle until it failed. To investigate the sensing capabilities of the composite, he affixed electrodes on both sides of the cantilever. In a machine called a “dynamic mechanical analyzer,” he clamped one end to hold the cantilever stationary. The machine applied force at the other end to flex the beam while Bowland monitored the change in electrical resistance. ORNL postdoctoral fellow Ngoc Nguyen conducted additional tests in a Fourier-transform infrared spectrometer to study chemical bonds within the composites and improve understanding of the enhanced mechanical strength that was observed. The researchers also tested composites made with different amounts of nanoparticles for the ability to dissipate energy—as measured by vibration-damping behavior—a capability that would benefit structural materials subjected to impacts, shakes, and other sources of stress and strain. At every concentration, the nanoparticles enhanced energy dissipation (by 65 to 257 percent). “Dip coating offers a new route to utilize novel nanomaterials under development,” Bowland said. UT-Battelle manages ORNL for DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. |
11/16/2018
Researchers at the Department of Energy’s Oak Ridge National Laboratory have applied for a patent on a composite that includes semiconducting nanoparticles, which will increase strength and imbed monitoring capabilities.